Les derniers contenus liés aux tags Tesla et GK110

Nvidia lance la Tesla K80: double GK210 avec Boost

Publié le 08/12/2014 à 08:00 par Damien Triolet

Lors de l'annonce d'une nouvelle gamme de Quadro cet été, nous nous étions étonnés de ne pas voir arriver un modèle haut de gamme basé sur un nouveau "gros" GPU Kepler : le GK210. Ce dernier n'est cependant pas passé à la trappe et vient d'être introduit au travers de la nouvelle carte accélératrice Tesla K80.


Après les Tesla K10, K20, K20X et K40, Nvidia introduit le Tesla K80 qui est le second modèle bi-GPU de la famille. Elle embarque en effet deux GK210, une petite évolution des GK110/GK110B exploités sur différents segments depuis deux ans. De quoi pousser les performances un cran plus haut tout en restant sur un même format, mais bien entendu en revoyant les demandes énergétiques à la hausse.


La Tesla K80
La Tesla K80 se contente de GPU partiellement fonctionnels, seules 2496 unités de calcul sur 2880 sont actives, ce qui permet de limiter quelque peu la consommation. De quoi atteindre de 5.6 à 8.7 Tflops en simple précision et de 1.9 à 2.9 Tflops en double précision. Pour le reste, le bus mémoire est complet avec 384-bit par GPU pour une bande passante totale qui atteint 480 Go/s.


Comme pour les Tesla K40, chaque GPU de la Tesla K80 profite de 12 Go de GDDR5 avec une protection ECC optionnelle qui réduit la bande passante et la quantité de mémoire réellement disponible. Elle est alors réduite de 1/16ème et passe à 11.25 Go par GPU.

Le TDP de cet accélérateur bi-GPU est de 300W, contre 235W pour les Tesla mono-GPU. Une augmentation plutôt contenue liée au fait que le GK210 est un petit peu plus efficace sur le plan énergétique mais surtout à la mise en place d'un turbo dynamique et d'une fréquence de base relativement faible.

Les Tesla précédentes profitaient déjà d'un mode turbo, dénommé GPU Boost comme sur GeForce, mais il était statique et le TDP était défini par Nvidia comme la consommation moyenne du GPU à sa fréquence de base lors de l'exécution d'un algorithme gourmand finement optimisé pour exploiter au mieux le GPU : DGEMM. Si le GPU était exploité pour faire tourner des tâches moins lourdes, ou s'il était particulièrement bien refroidi, il était possible à travers une API spécifique de faire passer manuellement le GPU à un niveau de fréquence supérieur. Par exemple le GPU de la Tesla K40 est cadencé par défaut à 745 MHz, mais il peut être configuré en mode 810 ou 875 MHz et voir sa puissance de calcul bondir de 17%.

Nvidia justifiait l'utilisation d'un turbo statique par la nécessité de proposer un niveau de performances stable et un comportement déterministe, notamment parce que certains clusters font travailler les GPU en parallèle de manière synchrone. Un autre élément était probablement que valider un turbo dynamique était plus complexe dans le monde professionnel que grand public.

Avec la Tesla K80 cela change et par défaut c'est un turbo dynamique qui est activé et qui fonctionne de la même manière que sur les GeForce récentes à ceci près que pour des raisons de sécurité, le GPU débute à sa fréquence de base et accélère progressivement si les limites de consommation (150W par GPU) et de température n'ont pas été atteintes (il part de la fréquence maximale et la réduit sur GeForce). La plage pour ce turbo dynamique est particulièrement élevée, de 562 à 875 MHz, ce qui représente jusqu'à 55% de performances supplémentaires lorsque les tâches ne sont pas très lourdes. C'est bien entendu dans ce type de cas que cette Tesla K80 se démarquera le plus d'une K40. A noter que Nvidia propose toujours, optionnellement, la sélection de manière statique d'un certain niveau de fréquence.


Il s'agit d'un format dédié au serveur et donc passif, pour cette carte de 267mm de long, qui semble reprendre le même PCB que celui de la GeForce GTX Titan Z. Petite nouveauté, la Tesla K80 n'est pas alimentée via des connecteurs PCI Express mais bien via un seul connecteur d'alimentation CPU 8 broches, plus adapté aux serveurs et qui simplifie le câblage (les traces pour ce connecteur sont présentes sur la GTX Titan Z mais il n'a pas été utilisé).

La Tesla K80 est disponible dès à présent à un tarif de 5300$ et a été validée par Cray (CS-Storm, 8 K80 par nœud 2U), Dell (C4130, 4 K80 par nœud 1U), HP (SL270, 8 K80 par nœud 4U half-width) et Quanta (S2BV, 4 K80 par nœud 1U). De quoi pousser à la hausse la densité des capacités de calcul et atteindre de 7.5 à 11.6 Tflops en double précision par U suivant la tâche.

A noter que la concurrence n'est pas pour autant larguée. AMD a implémenté une proportion plus élevée d'unités de calcul double précision dans son dernier GPU haut de gamme (Hawaii), ce qui permet à la FirePro S9150 d'afficher un débit similaire à celui de la Tesla K80 et une densité de 10.1 Tflops par U dans le même type de serveurs.


La Tesla K8
En octobre Nvidia a discrètement lancé un autre membre dans la famille Tesla : la K8. Celle-ci est en fait équipée d'un GPU Kepler GK104, non-adapté au calcul en double précision. Grossièrement il s'agit de l'équivalent Tesla d'une GeForce GTX 770/680. Le design proposé par Nvidia a la particularité d'être single slot et actif mais est prévu exclusivement pour l'intégration dans un serveur et non dans une station de travail.


Le GPU, qui affiche de 1.4 à 2.5 Tflops en simple précision, est associé à 8 Go de mémoire. Par défaut, il est cadencé à 693 MHz (2.1 Tflops) et affiche un TDP de 100W. Pour les tâches légères il peut être poussé à 811 MHz et il est également possible d'activer un mode 70W dans lequel la fréquence tombe alors à 445 MHz. Par ailleurs, l'interface PCI Express de ce GPU est limitée au PCI Express 2.0 dans le monde professionnel.


GK210, quoi de neuf ?

Alors que la génération de GPU Maxwell a pris place dans le haut de gamme grand public, c'est un nouveau GPU de la famille Kepler que Nvidia vient d'introduire dans sa gamme Tesla. Nvidia ne communique que peu de détails sur les évolutions apportées par le GK210 qui reste fabriqué en 28 nanomètres et présente une configuration globale similaire à celle du GK110. Nvidia se contente de préciser que le fichier registre et la mémoire partagée ont été doublés, ce qui dans les deux cas permet de mieux alimenter les unités de calcul du GPU et donc son rendement.


[ GK110 ]  [ GK210 ]  

Plus en détail, sur le GK110 comme sur tous les autres GPU Kepler, les unités de calcul sont intégrées dans les SMX, les blocs fondamentaux de l'architecture Kepler. Chaque SMX est subdivisé en 4 partitions qui se partagent l'accès aux unités de calcul, dont 192 FMA simple précision et 64 FMA double précision dans le cas des GPU GK110 et GK210. Chacune de ces partitions dispose d'un ordonnanceur et d'un fichier registres indépendant de 64 Ko, ce qui équivaut à 16384 registres 32-bit ou 8192 registres 64-bit. Le GPU étant une machine optimisée pour le débit, ces imposants fichiers registres sont exploités pour s'assurer que suffisamment d'éléments ("threads") puissent résider en interne de manière à ce que leur traitement successif puisque masquer la latence qui peut être très élevée pour certaines opérations.

Bien qu'imposants, ces fichiers registres ne sont pas sans limite et lorsqu'elle est atteinte, le taux d'utilisation des unités de calcul peut chuter fortement. Cela peut arriver quand le code à exécuter a besoin d'un nombre important de registres, quand de nombreuses opérations à latence élevée sont exécutées ou encore en 64-bit, mode deux fois plus gourmand sur ce point. Il peut ainsi s'agir d'un facteur limitant dans le cadre du calcul massivement parallèle et avec le GK210, Nvidia fait évoluer ces fichiers registres qui passent pour chaque partition de 64 Ko à 128 Ko (soit de 256 à 512 Ko par SMX et 7.5 Mo au total à l'échelle du GPU). De quoi s'assurer un taux de remplissage moyen plus élevé et donc de meilleures performances.

Le principe est le même pour le bloc qui regroupe la mémoire partagée et le cache L1. Chaque groupe d'éléments à traiter peut se voir attribuer une certaine quantité de mémoire partagée. Plus la quantité de mémoire partagée nécessaire est élevée, moins de groupes peuvent résider en même temps dans le GPU : la latence peut alors ne plus être totalement masquée ou un algorithme moins efficace, mais exigeant moins de mémoire partagée doit être utilisé, ce qui fait chuter les performances dans les deux cas.

Avec le GK210, Nvidia fait donc évoluer cette mémoire de 64 Ko à 128 Ko par SMX, mais, détail important, la totalité de la mémoire supplémentaire est attribuée à la mémoire partagée. Ainsi, alors que la répartition L1/mémoire partagée pouvait être sur GK110 de 16/48 Ko, 32/32 Ko ou 48/16 Ko, elle pourra être soit de 16/112 Ko, soit 32/96 Ko, soit de 48/80 Ko sur GK210 (suivant la quantité de L1 jugée nécessaire par le compilateur). En d'autres termes, la mémoire partagée sera en pratique de 2.33x à 5x supérieure sur ce nouveau GPU, ce qui pourra apporter un net gain de performances pour certaines tâches. Pour rappel sur les GPU Maxwell de seconde génération, la mémoire partagée n'est plus liée au L1 et est de 96 Ko.

Contrairement à ce que nous supposions au départ face à l'absence de réponse de Nvidia à cette question, le GK210 ne reprend pas la modification apportée aux autres GPU de la lignée GK2xx par rapport à la lignée GK1xx : la réduction de moitié du nombre d'unités de texturing. Un compromis qui permet de réduire la taille des SMX avec un impact sur les performances lors du rendu 3D, mais qui n'a pas été retenu dans le cas du GK210 qui conserve ses 240 unités de texturing, soit 16 par SMX. De quoi lui permettre de conserver l'ensemble de 4 petits caches de 12 Ko spécifiques aux unités de texturing (48 Ko par SMX). Ces derniers peuvent être déviés de leur rôle principal pour faire office de cache en lecture très performant.

Du côté grand public, ce GPU GK210 n'aura peut-être aucune existence et dans tous les cas un intérêt limité étant donné que les GPU de la nouvelle génération Maxwell y sont déjà commercialisés et sont plus performants et plus évolués sur le plan des fonctionnalités. Il permet par contre à Nvidia de proposer un GPU plus efficace dans le domaine du calcul massivement parallèle et pourrait bien être le premier GPU conçu spécialement pour cet usage. Dans tous les cas, Nvidia a de toute évidence stoppé la production de puces GK110B et, si nécessaire, pourra simplement remplacer le GK110/110B par un GK210 sur n'importe lequel de ses produits.

Reste que le timing de son arrivée peut évidemment sembler étrange. Pourquoi concevoir et introduire fin 2014 un nouveau GPU de l'ancienne architecture Kepler, alors que l'architecture Maxwell est déjà disponible ? Et qu'un plus gros GPU Maxwell, le GM200, est attendu ? Il peut y avoir plusieurs raisons à cela et deux d'entre elles nous paraissent les plus probables : soit le GM200 est très loin d'être prêt à être commercialisé, soit le GM200 n'est pas un GPU adapté au monde du HPC, par exemple parce qu'il ne serait pas équipé pour le calcul double précision.

Rien ne dit qu'il faille y voir une quelconque confirmation, mais cette seconde possibilité ne serait pas incompatible avec les roadmaps présentées par Nvidia. En mars 2013, la roadmap faisait état de l'évolution du rendement énergétique en double précision en passant de Kepler à Maxwell et enfin à Volta. En mars 2014, l'unité utilisée par Nvidia était cette fois du calcul en simple précision… et une architecture Pascal, clairement pensée pour le monde du HPC, a été intercalée entre Maxwell et Volta. Ceci dit, il nous semble difficile d'imaginer Nvidia se contenter du GK210 en 2015, et de patienter jusqu'à l'arrivée de Pascal en 2016 pour proposer une évolution plus importante sur ce marché…

Nvidia annonce la Tesla K40 et CUDA 6

Tags : CUDA; GK110; GPGPU; IBM; Nvidia; Tesla;
Publié le 25/11/2013 à 18:29 par Damien Triolet

La semaine passée, à l'occasion du SC13 (Supercomputing 2013), Nvidia a annoncé deux nouveautés liées au calcul haute performance : l'accélérateur Tesla K40 et la version 6 de CUDA.

Pour rappel, c'est la gamme Tesla qui a été la première à profiter du plus gros GPU de la famille Kepler, le GK110. Contrairement aux Quadro K6000 et GeForce GTX 780 Ti plus récentes, cette gamme Tesla n'accueillait cependant toujours pas de version complète du GK110, c'est-à-dire avec l'ensemble de ses unités d'exécution actives. Une configuration facilitée par l'arrivée de la révision B1 du GPU.

La Tesla K40 profite ainsi de 15 SMX, de 2880 unités de calcul FMA 32-bit et de 960 unités FMA 64-bit pour afficher une puissance de calcul en hausse de près de 10% par rapport à la Tesla K20X. Par ailleurs, comme pour le Quadro K6000, Nvidia profite de la disponibilité effective de la GDDR5 4 Gbits pour faire passer la mémoire dédiée de son accélérateur de 6 à 12 Go. Sa fréquence est par ailleurs revue à la hausse ce qui profite à la bande passante mémoire en hausse de 15%.


Si la fréquence GPU ne progresse que très peu pour la Tesla K40, c'est uniquement pour garantir que l'enveloppe thermique ne soit pas atteinte dans les tâches de type calcul, sachant que, contrairement aux GeForce, Nvidia ne propose pas de turbo pour ces cartes afin d'éviter que leurs performances soient variables. Par contre, pour la Tesla K40, Nvidia propose 2 modes avec des fréquences GPU différentes : optionnellement, il sera ainsi possible de passer le GPU de 745 à 810 ou 875 MHz. Il ne s'agit pas d'un overclocking dans le sens où ces fréquences sont validées par Nvidia, ni d'un turbo automatique, même si Nvidia place cette possibilité sous l'appellation GPU Boost, marque du turbo des GeForce... Si la personne qui exploite ces Tesla K40 constate qu'elles restent loin de leur TDP dans une certaine situation, elle aura la possibilité de passer à un de ces modes de fréquence supérieure. De quoi profiter 9% voire 17% de puissance supplémentaire.


A noter que la Tesla K40 sera proposée autant avec un refroidissement actif, comme la K20, qu'avec un refroidissement passif en vue d'intégration dans un serveur, comme la K20X. Enfin, le PCI Express 3.0 est activé sur la K40 contrairement aux K20/X.

Nvidia ne communique pas au niveau de la tarification, mais elle devrait rester inférieure à celle de la Quadro K6000, probablement passer à 5000$ alors que les K20/X devraient voir leur tarif baisser. Il faut cependant garder en tête que sur ce marché de niche, les prix sont fortement variables, les grossistes n'hésitant pas à se réserver des marges conséquentes. Ainsi pour des tarifs annoncés par Nvidia de 3200$ et de 5000$ pour les K20 et K20X, en pratique, il fallait en général compter plutôt 4000$ et 7500$, la même chose en euros.


Parallèlement à l'arrivée de cette nouvelle Tesla, Nvidia a annoncé CUDA 6 qui apporte une nouveauté majeure et très attendue : la prise en charge d'une mémoire unifiée. Une fonctionnalité qui donne l'impression d'être annoncée et réannoncée régulièrement, AMD et Nvidia ayant régulièrement joué sur les mots à ce niveau. Pour rappel, depuis quelques temps, CUDA supporte un adressage de mémoire virtuelle unifié, qui facilite quelque peu le développement mais n'était qu'un premier pas. La mémoire unifiée, représente cette fois une abstraction totale de la gestion de la mémoire : il n'est plus nécessaire que le développeur gère les transferts de données de la mémoire centrale vers la mémoire de l'accélérateur.

Une gestion manuelle de la mémoire restera possible, étant donné qu'aussi bénéfique soit cette simplification, elle peut avoir un coût sur le plan des performances et de l'efficacité puisqu'il reviendra aux pilotes et/ou aux compilateurs d'essayer de placer automatiquement les données au bon endroit.


Confiant dans l'avenir, Nvidia termine par annoncer que l'ouverture par IBM, cet été, de sa plateforme serveur POWERn, va permettre d'y intégrer des accélérateurs Tesla dès 2014. Des accélérateurs qui seront ainsi exploités non plus uniquement sur x86 mais également sur architectures POWER et ARMv8.

GTC: CUDA on ARM: Tegra 3 + Tesla K20

Publié le 20/03/2013 à 06:51 par Damien Triolet

En plus des plateformes CUDA on ARM destinées à simuler de futurs SoC que ce soit pour une utilisation de type périphérique mobile grand public ou de type micro-serveur, des développements se font également autour d'accélérateurs très puissants tels que les Tesla K20.

C'est le cas chez l'européen PRACE qui développe des systèmes dédiés au supercomputing et s'intéresse à CUDA on ARM depuis quelques temps. En collaboration avec le Barcelona Supercomputing Center, PRACE est en train de mettre au point une plateforme ARM équipée en GK110 : Pedraforca v2. Celle-ci est composée d'une carte mini-ITX sur laquelle prend place un module Q7 Tegra 3 dont 4 des lignes PCI Express 2.0 sont connectées à un switch PLX PCI Express 3.0 sur lequel vont venir se greffer un accélérateur Tesla K20 et une carte contrôleur InfiniBand 40 Gbps.


Cette plateforme a la particularité de ne pas rechercher la complémentarité entre les cores CPU et GPU. Grossièrement, le but est d'utiliser le SoC ARM uniquement pour activer un système CUDA plus ou moins indépendant. C'est la raison pour laquelle le Tesla K20 est associé à un contrôleur InfiniBand sur un même switch PCI Express 3.0 : ils peuvent ainsi communiquer très rapidement avec les accélérateurs d'autres nœuds en ignorant autant que possible la communication avec les SoC et leurs mémoires.

Les développeurs de Pedraforca v2 sont bien conscients qu'une telle approche n'est pas une solution de remplacement générale à un système CUDA classique et se contentera de répondre avantageusement à un sous-ensemble de problématiques : si un problème massivement parallèle peut être résolu sans CPU, autant réduire l'encombrement et la consommation de celui-ci.

Une telle solution permet par ailleurs de simuler le comportement de futurs GPU haut de gamme qui pourraient intégrer un ou plusieurs cores ARMv8 Denver pour gagner en indépendance. De quoi commencer à préparer des algorithmes qui leur seront adaptés ?

GK110 : Nvidia lance les Tesla K20 et K20X

Tags : CUDA; GK110; Nvidia; Tesla;
Publié le 12/11/2012 à 15:35 par Damien Triolet

A l'occasion de la conférence SC12, dédiée aux supercalculateurs et technologies liées, Nvidia annonce la disponibilité commerciale de l'accélérateur Tesla K20 dont nous vous avions déjà parlé. Cette carte embarque un GPU GK110 qui reprend l'architecture Kepler déjà en place sur les GeForce GTX 600 mais légèrement retouchée pour faciliter l'exploitation du GPU en tant qu'accélérateur.


Le GPU GK110 et ses 7.1 milliards de transistors.

Parmi les avancées citons une capacité de traitement en double précision très élevée, un texture cache plus flexible et surtout un processeur de commande plus évolué. Il est capable de gérer jusqu'à 32 files d'attente d'exécution pour mieux exploiter la capacité du GPU à exécuter plusieurs tâches concurrentes, ce que les GPU Nvidia précédents avaient du mal à faire en pratique. Il est également capable d'auto-générer des tâches, ce qui évite des allers-retours incessants avec le CPU qui réduisent l'efficacité réelle de l'accélérateur.


Par rapport à nos précédentes informations, les spécifications de la Tesla K20 sont confirmées, si ce n'est au niveau de la mémoire où elles évoluent très légèrement. Elle est donc bien basée sur un GK110 castré qui se contente de 13 blocs d'unités de calcul, SMX, sur les 15 physiquement présents sur la puce. Il en va de même pour les contrôleurs mémoire dont seulement 5 des 6 sont exploités, ce qui limite la mémoire de la Tesla K20 à 5 Go (4.38 Go avec ECC actif).

Petite surprise, Nvidia lance également une Tesla K20X. Le GK110 qu'elle embarque profite cette fois bien de 14 SMX, pour se rapprocher des 4 Tflops, ainsi que de ses 6 contrôleurs mémoire qui disposent donc de 6 Go de GDDR5 (5.25 Go avec ECC actif). C'est en réalité cette Tesla K20X qui prend place dans le supercalculateur Titan et nous pouvons imaginer que Nvidia a dû sortir 2 variantes de la K20 d'une part pour respecter le cahier de charge au niveau de ce supercalculateur et d'autre part pour disposer d'une production suffisante. Fabriquer un GPU de 7.1 milliards de transistors en 28 nanomètres reste un défi !

Avec plus d'unités de calcul et une fréquence légèrement supérieure, la Tesla K20X ne peut se contenter du TDP de 225W de la Tesla K20. Nvidia a cependant pu le limiter à une valeur proche : 235W. Il nous a par ailleurs été confirmé qu'une technologie de contrôle de la consommation similaire au GPU Boost des GeForce GTX 600 était bien présente sur cette carte et qu'elle pourrait éventuellement être personnalisée par certains fabricants de stations de travail et de serveurs, soit pour adapter la limite de consommation, soit pour activer sa composante turbo.


La Tesla K20 sera disponible en version workstation (refroidissement actif) ainsi qu'en version serveur (refroidissement passif) alors que la Tesla K20X n'existera que dans cette dernière version. Au moins deux formats serveurs sont proposés par Nvidia : carte PCI Express "classique" telle qu'illustrée ici ou SXM, similaire au MXM des cartes graphiques mobiles.


La disponibilité des Tesla K20 et K20X est annoncée pour la fin de ce mois avec un tarif de 3200$ pour la première alors qu'il faudra compter 5000$ pour la seconde. Des tarifs nettement plus élevés que sur la génération précédente qui laissent penser que, pour Nvidia, l'adhésion de l'industrie du calcul haute performance à ces accélérateurs massivement parallèles est désormais inéluctable. Nvidia compte sur un écosystème CUDA relativement répandu et réputé pour faire face à la concurrence des FirePro S d'AMD et des Xeon Phi d'Intel.

Tesla K20 et GK110 : les specs finales ?

Tags : GK110; Kepler; Nvidia; Tesla;
Publié le 17/10/2012 à 06:12 par Damien Triolet

Comme vous devez le savoir, Nvidia prévoit de commercialiser à partir du mois de décembre la première carte basée sur le gros GPU Kepler, le GK110 et ses 7.1 milliards de transistors. Dénommée K20, elle prend place dans la gamme Tesla destinée au calcul intensif.

Certains gros clients ont reçu les premiers échantillons de la part de Nvidia et les détails commencent à fuiter. Citons par exemple le cas d'Oak Ridge National Laboratory qui est en train de faire évoluer son supercalculateur Cray XT5, dénommé Jaguar, en remplaçant progressivement ses 18688 nœuds par des plateformes XK6 équipées d'Opteron 6274 Bulldozer. 14592 de ces nœuds sont voués à recevoir un accélérateur Tesla K20.


heise online  a pu relever, avant leur retrait, les spécifications finales de la Tesla K20 qui ont été publiées par CADnetwork, un revendeur de serveurs. Comme nous le supposions à son annonce, une partie des unités de calcul sont désactivées de manière à obtenir un volume de production suffisant. Alors que le GK110 embarque 15 blocs d'unités de calcul, les SMX, 13 seront actifs sur la Tesla K20.

Inattendu par contre, Nvidia aurait également désactivé l'un des 6 contrôleurs mémoire 64-bit du GPU ce qui impliquerait qu'il devrait se contenter de 5 Go de GDDR5 et non de 6 Go comme annoncé au départ. Nous utilisons cependant le conditionnel sur ce point puisqu'il est possible, mais peu probable, que ces spécifications reposent sur des chiffres qui correspondent à l'ECC activé : sur 6 Go, seuls 5.25 Go restent ainsi accessibles dans ce mode.

Les spécifications font état d'une fréquence GPU relativement faible de 705 MHz, ce qui était sans aucun doute nécessaire pour ne pas dépasser le TDP de 225W. En présumant que les spécifications ne prennent pas en compte l'activation de l'ECC, ce n'est en général pas le cas, la mémoire GDDR5 serait ainsi cadencée à 1250 MHz.


Comme vous pouvez le constater à travers ces quelques chiffres bruts, avec quelques unités désactivées et une fréquence relativement faible, la carte Tesla K20 se situe au niveau d'un exemplaire de GeForce GTX 680 équipé d'un GPU dont le turbo dispose d'une fréquence élevée. La Tesla K20 profite par contre d'une puissance en double précision nettement plus élevée ainsi que de différentes petites évolutions qui permettront de rendre le GPU plus efficace en tant que coprocesseur massivement parallèle.

Ces spécifications laissent cependant penser qu'il sera difficile pour Nvidia de proposer une variante GeForce intéressante du GK110 sans faire exploser le TDP, même si le turbo maison, GPU Boost, permet de laisser la fréquence GPU monter quelque peu dans le TDP défini. Notons que certaines rumeurs laissent d'ailleurs entendre que Nvidia pourrait ne pas utiliser ce GK110 pour sa prochaine GeForce haut de gamme. Au profit d'un GPU moins complexe mais plus hautement cadencé ?

Top articles